

Document name:
Yocto/Debian Comparison White Paper

Document owner:
Mads Doré Hansen

Filename: Modified:
Yocto_Debian_Whitepaper 2017-08-09

Classification: Client: Project/Process: Version: Page:
Public Prevas White Paper R1 1(8)

Yocto or Debian for Embedded Systems

White Paper

Filename: Modified:
Yocto_Debian_Whitepaper 2017-08-09

Classification: Client: Project/Process: Version: Page:
Public Prevas White Paper R1 2(8)

Contents

1 Introduction .. 3

1.1 Executive Summary .. 3

2 Linux System Parts and Development Short Overview ... 4

3 Yocto vs. Debian .. 5

Filename: Modified:
Yocto_Debian_Whitepaper 2017-08-09

Classification: Client: Project/Process: Version: Page:
Public Prevas White Paper R1 3(8)

1 Introduction

This white paper presents a comparison of the Yocto Project and Debian for development and
maintenance of an embedded Linux platform.

Strictly speaking, the term Linux refers to an operating system kernel, and not all the individual
parts that make up a complete system. A given configuration of Linux kernel, bootloader and
root-filesystem is referred to as a Linux Distribution.

In the context of this paper, Yocto means a Linux system based on the Yocto Project:

 https://www.yoctoproject.org

Yocto is a tool to configuration full Linux Distribution and is not a Linux
distribution in itself.

And Debian means a Linux system based on:

 https://www.debian.org

Debian is a Linux distribution (or a number of Linux basic distributions)
and is not a tool for making distributions in itself.

Hence different nature of Yocto and Debian a comparison of the two as foundation for
development and maintenance of embedded Linux systems will mostly be a comparison
between using a tool to make a customized Linux distribution or starting with a specific Linux
distribution and then change it into a partly customized Linux distribution.

1.1 Executive Summary

At present, using a Debian distribution as the foundation for an embedded Linux system will be
more proprietary, less portable to other hardware types, harder to maintain and with lower
traceability than using Yocto to build a similar embedded Linux system. The Debian based
system will require more resources (RAM / Storage) than a tightly adapted and optimized Yocto
based Linux system.

The discussion amongst Linux developers regarding Debian vs. Yocto is seldom based on facts
it is merely based on feeling and habits. As presented in this white paper Debian and Yocto
comparison is mostly like comparing apples and pears, they were not made to solve the same
problems. Shown in the fact based comparison of chapter 3 the two each have their strengths
and weaknesses.

 Debian is good for fast trials, proof of concept and desktop like environments on
hardware already supported by Debian with large memories and limited requirements
for maintenance, traceability and reuse across different hardware targets.

 Yocto is good for customized embedded environments with various hardware support
and small to large memories and requirements for maintenance, traceability, longevity
and reuse across difference hardware targets.

The two difference sets of strengths of Debian and Yocto sadly often results in Debian being
used for early prototyping (which makes sense) and afterwards being used for the final
customized Linux system, with the argument: “We have Debian already, must be cheaper to
continue than switch to Yocto”. The strength and weaknesses, as presented in chapter 3, shows
that it would in almost any longevity industrial Linux system by more rational to used Debian (or
other prebuilds) for early prototyping and switch to Yocto as soon as detailed customization is
started.

https://www.yoctoproject.org/
https://www.debian.org/

Filename: Modified:
Yocto_Debian_Whitepaper 2017-08-09

Classification: Client: Project/Process: Version: Page:
Public Prevas White Paper R1 4(8)

2 Linux System Parts and Development Short Overview

Regardless if a Linux distribution is based on Debian or Yocto the development environment
and final Embedded Linux Platform consists of the parts shown in the illustration below.

 Applications

 Development
Host PC

 Libraries

 High-level abstraction

File systems

Network
Protocols Tools

 Cross Compiler Low-level interfaces

 Debugger

 Meta data Bootloader

 Source

 HW

Cross compiling is almost only used for Yocto based systems, Debian mostly uses on target
compilation (therefore Cross Compiler is marked in Italic).

Steps involved in make a Linux distribution with the two difference approaches are shown
roughly below. Blue marking steps that the developer is without influence on and green marking
the steps the developer has influence on.

Debian steps

Yocto steps

(Cross) compile Configure
Build all

packages
Distribute to

cloud

Customize

• Fetch basic
image

• Add packages

• Remove
packages

• Recompile
kernel

Final image

Fetch sources Configure
Package
selection

Cross
compile

Final
image

L
in

u
x

K
e
rn

e
l

Embedded Linux Platform

Normally done manually or in
proprietary scripts of different
kind.

Normally done in the recipe structure and syntax of Yocto.

Filename: Modified:
Yocto_Debian_Whitepaper 2017-08-09

Classification: Client: Project/Process: Version: Page:
Public Prevas White Paper R1 5(8)

3 Yocto vs. Debian

Even though the source code, kernel and bootloader is the same (or at lease often originate
from the same FOSS projects) the conceptual differences are huge in how everything is
developed. The main differences are shown in the following overview.

Issue Yocto Debian

Compilation Yocto fully relies on cross
compiling.

Some open source packages
was originally not designed for
cross compiling, putting stress on
use of these packages in a Yocto
based system. But throughout
the last 5-10 years most common
Linux packages/features have be
transferred to allow cross
compiling.
So the discussion on using/not
using cross compilation is today
often more a matter of habit than
technical difficulties.

Dependent the HW platform in
question the Development Host
PC will have or not have a Cross
Compiler enabling e.g. compiling
of kernel for a Debian based
Linux system off-target. Most
often Debian based systems rely
on on-target compiling.

Debian is thereby stressed on
smaller targets. E.g. on-target
compiling of a Linux kernel on
a 400MHz system is quite
slow.

Package/Feature addition Added through recipes into a full
firmware build (or single package
build) with cross compilation on
the Development Host PC.
Either add only through full
firmware updates or a package
manager by choice (could be the
Debian package manager).

Using a package manager would
require the developer to build
that package in Yocto in the right
context.

Added through package
installation on-target via the
Debian Package manager.

Configuration and customization
of single features

Each software package/feature
has its own recipe and/or meta-
layer,that provides configuration
of how that package/feature is
build. Allowing full configuration
and customization of every detail
within the structured scope of
Yocto.

All configuration can in Yocto be
tracked and controlled between
two updates of the system.

Most software package/feature
comes (partly) pre-build and
configured, with is one of the
great advantages of getting a
running platform fast in Debian.

This often results in fewer
possible configuration and
customization possibilities, as the
developer then relies on the
previous choices of the Debian
package provider.

Full configuration and
customization of single features
in Debian thereby often leads to
manual, non-standadized,
compilations with harder or no
reproducibility.

It is hard to know if a given
configuration is/will be the same
between two updates of the
system.

Filename: Modified:
Yocto_Debian_Whitepaper 2017-08-09

Classification: Client: Project/Process: Version: Page:
Public Prevas White Paper R1 6(8)

Issue Yocto Debian

Configuration and customization
of the full platform

The full platform is also
configured and customized in
recipes and/or meta-layers,
enabling the possibility for
maximization of source and
meta-data reuse across
differently configured/customized
HW platforms.
E.g. if the same configuration is
need both on an x86 and an
ARM based HW the bootloader
configuration and kernel
configuration is changed in Yocto
and the full system is recompiled.
Allowing full reuse all other
software parts on both HW types.

As Debian is based mostly on
prebuild packages a differently
configured/customized platform
most often means a complete
new separate Debian Linux in
both development and
maintenance.

E.g. if the same configuration is
need both on an x86 and an
ARM based HW the full manual
work is needed to make two
Linux systems, one per HW to
support.

Often it is seen that this leads to
great variation on the features of
the Linux, as not all features
exists for both ARM and x86 in
same versions and configuration
in the pre-build Debian
packages.

For small custom systems a
Debian tool called debootstrap
exists, but has limitation as e.g.
ARM systems cannot be
configured on an x86 host.
Prevas have not seen this tool in
use at any of our customers yet,
the usual setup is proprietary and
home made.

Learning curve Yocto has a steeper learning
curve than Debian, mostly due
to:

- Cross compiling.
- Meta-layer concept.
- Recipe build-up.
- “Non-forgiveness” of

missing dependencies.

The high learning curve is
often the most elaborated
reason the developers to avoid
Yocto.

Debian has a lower learning
curve than Yocto, mostly due to:

- Package installation
looks and feels like a
Desktop Linux.

- First running system is
up fast.

Filename: Modified:
Yocto_Debian_Whitepaper 2017-08-09

Classification: Client: Project/Process: Version: Page:
Public Prevas White Paper R1 7(8)

Issue Yocto Debian

Reproducibility Is very high as everything (if not
made “messy” on purpose) is
recipe based and cross
compiled, often in a Docker
environment, with possible
source mirroring. Enabling full
automated builds in a build
server environment from scratch
without human interference.

Is very low as the Package
installation nature of Debian
relies on cloud based pre-
compiled packages, ending up in
manually build gold-samples of
the final Linux system.
This is often counteracted by
developers by build proprietary
script based tools around Debian
working a given host machine,
adding customized knowledge
and making a steeper learning
curve for newcomers to a given
project.

Missing or extremely
expensive reproducibility is
the most common reason
companies discontinues
Debian based Linux’s and
switches to Yocto.

Patching The level of patching used in
Yocto often limited, relying on
patches for each software
package already available
upstream and the patches need
to provide a build for the given
target platforms.

The patch level of Debian is
often considered high as Debian
is more generic and the project
has some rules about how
Debian shall look.

Heavy patching results in more
complex systems with respect to
debug and maintenance, as
patches on patches make is a lot
harder to determine what code is
actually running on the system.
Likewise impact from updating
the lowest layer in that patch
stack is often impossible to
forsee.

Host tool dependencies Yocto is dependent on a number
of host tools to work. The list is
constantly getting shorter, but
still is exists and will never go
away completely.

It has become good practice for
Yocto developers to use Docker
images as an efficient tool the
overcome the final host tool
dependencies, reducing them the
host being able to run a Linux
Docker image.

If on-target building is used and
manual packages installation
Debian does not have any critical
host tool dependencies.

Often a reason for a quick
selection of Debian, as it is
very easy to get started on a
generally good supported HW
platform.

Scaling and Automation With request to scaling and
automation of Linux development
onto multiple platforms and
developers the recipe and meta-
layer approach of Yocto provides
significant advantages. Mostly as
the work can be split efficiently
between developers and
build/test can be automated
without human interference.

Debian “golden copy” approach
is not very feasible in respect to
scaling to multiple HW types and
more developers.

Likewise automated build/test
requires proprietary tools and on-
target SW build is not very
feasible for efficient automation
and scaling.

FOSS license overview An overview of included licenses
in a distribution is provided as
output from a Yocto build.

Must be manually extracted for
each software feature included in
the basic system and installed
with the package manager.

Filename: Modified:
Yocto_Debian_Whitepaper 2017-08-09

Classification: Client: Project/Process: Version: Page:
Public Prevas White Paper R1 8(8)

Issue Yocto Debian

Testing When the Linux system has been made the same testing possibilities
exists. The testing possibility differences only/mostly adheres to
automation of system build and cross-compiling SDK tests, address
tests of error occurring between SDK/cross-compiler for application
and the features available on the target.

Debugging The same tools are available for both Yocto and Debian.

 A Debian there are bindings
between the Debian version
running on the host machine and
on the target. Without a match
the debug tools might not work.

Boot time optimization The nature of developing a
customized distribution bottom-
up usually provides “automatic”
optimization of boot time, with
respect to a more general
distribution.

It is most often seen that Debian
based distribution is starting a
number of un-required services
(as it is that nature of general
systems) and thereby adding the
boot-time.

Currently a project is running in
Prevas where similar
distributions is made for the
same project in both Yocto and
Debian. Current the Yocto based
distribution boots in about 10
seconds and the Debian based is
booting in about 60 seconds.

RootFS size As Yocto is used as a
configuration tool the root file
system is initially reduced and
the configuration can be
controlled to minimise the
footprint of the distribution to
“only what is actually needed”.

Current a project is running a
Prevas making a 30MB unzipped
root filesystem for an ARM board
in Yocto.

A commonly seen lightweight
Debian system is e.g. armbian
(Debian for ARM). This has a
250MB gzipped root file system.

On the “standard” distributions with Graphics and without much
optimization the root file system footprints (unzipped) for the
embedded distributions are normally seen around:

Debian ~ 1 GB.
Yocto ~ 250 MB.

Kernel sizes Are the same for both types of systems.

